可以采用较大的密封间隙,因此能密封含有固相杂质的介质,磨损小,寿命长,若设计合理可以做到接近于零泄露。但是这种密封所能克服的压差小,亦即密封的减压能力低。离心密封的功率消耗大,甚至可达泵有效功率的1/3。此外,由于它是一种动力密封,所以一停车立即丧失密封功能,为此必须辅以停车密封。
10.2.2 离心密封的减压能力
10.2.1 背叶片密封
如果工作轮后盖板上无叶片,亦即为光滑盘时,则处于后盖板与泵壳间隙腔中的液体将以工作轮角速度的ω/2的旋转。此时,间隙空腔中的压力沿径向按抛物线规律分布,如图10-5中的压力将沿ABEKG分布,也就是说,轴封处的压力降低了。
10.2 停车密封
停车密封是动力密封的重要组成部分。当部件旋转频率降低或停车时,动力密封失去密封能力,只有依*停车密封阻止流体泄漏。某些液封和气封液带有停车密封,以便停车后将封液、封气系统关闭。停车密封的结构类型有多种,其中应用最广的是离心式停车密封,此外还有压力调节式停车密封,胀胎式停车密封等。
10.2.1离心式停车密封
图10-10所示是一种典型的离心式停车密封结构,泵运转时*背叶片的离心作用密封。停车时,在弹簧力推动下,使泵轴向左滑移而将锥套填料抵紧,阻止泄漏。起动后离心子甩开,其抓部拔动轴肩使轴左移,将锥套与填料密封脱开,是密封面不受磨损。
10.2.2 压力调节式停车密封:
可以采用较大的密封间隙因此能密封含有固相杂质的介质

